

ПРАВИТЕЛЬСТВО САНКТ-ПЕТЕРБУРГА КОМИТЕТ ПО ОБРАЗОВАНИЮ

Государственное бюджетное общеобразовательное учреждение Лицей $N\!\!\!_{2}$ 40

ПРИМОРСКОГО РАЙОНА САНКТ-ПЕТЕРБУРГА

ПРИНЯТА

Педагогическим советом Образовательного учреждения Протокол от «29» августа 2024 г. № 1

УТВЕРЖДЕНА

Директор ГБОУ Лицей №40 Приморского района Санкт-Петербурга Н.Г. Милюкова

Приказ от «29» августа 2024 г. № 262-д

РАБОЧАЯ ПРОГРАММА

учебного предмета «Физика»

для обучающихся 9 классов

Результаты освоения курса физики 9 класса.

С введением ФГОС реализуется смена базовой парадигмы образования со «знаниевой» на «системно-деятельностную», т. е. акцент переносится с изучения основ наук на обеспечение развития УУД (ранее «общеучебных умений») на материале основ наук. Важнейшим компонентом содержания образования, стоящим в одном ряду с систематическими знаниями по предметам, становятся универсальные (метапредметные) умения (и стоящие за ними компетенции).

Личностными результатами обучения физике на ступени основного общего образования являются:

- сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- мотивация образовательной деятельности школьников на основе личностно-ориентированного подхода;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике на ступени основного общего образования являются:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;

- умения воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- опыт самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- развитие монологической и диалогической речи, умение выражать свои мысли и способность выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем; умение работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Общими предметными результатами изучения курса физики являются:

- умение пользоваться методами научного исследования явлений природы: проводить наблюдения, планировать и выполнять эксперименты, обрабатывать измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- умение применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
- развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, использовать физические модели, выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
- выражать результаты измерений и расчетов в единицах Международной системы;
- умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний.

Планируемые результаты изучения курса физики представлены на двух уровнях: базовом и углубленном (выделено курсивом). По окончании 9 класса предполагается достижение обучающимися уровня образованности и личностной зрелости, соответствующих Федеральному государственному образовательному стандарту, что позволит обучающимся

успешно пройти государственную итоговую аттестацию, достигнуть социально значимых результатов в творческой деятельности, способствующих формированию качеств личности, необходимых для успешной самореализации.

Механические явления

- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и равноускоренное прямолинейное движение, свободное падение тел, невесомость, равномерное движение по окружности, инерция, взаимодействие тел, передача давления твёрдыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твёрдых тел, колебательное движение, резонанс, волновое движение;
- описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость её распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, механические явления и процессы, используя физические законы и принципы: закон сохранения энергии, закон всемирного тяготения, равнодействующая сила, І, ІІ и ІІІ законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;
- различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчёта;
- решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, амплитуда, период и частота колебаний, длина волны и скорость её распространения): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- приводить примеры практического использования физических знаний о механических явлениях и физических законах; использования возобновляемых источников энергии; экологических последствий исследования космического пространства;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, закон Архимеда и др.);
- приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний по механике с использованием математического аппарата, оценивать реальность полученного значения физической величины.

Тепловые явления

- распознавать тепловые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объёма тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твёрдых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи;
- описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, тепловые явления и процессы, используя закон сохранения энергии; различать словесную формулировку закона и его математическое выражение;

- различать основные признаки моделей строения газов, жидкостей и твёрдых тел;
- решать задачи, используя закон сохранения энергии в тепловых процессах, формулы, связывающие физические величины (количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

- использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания (ДВС), тепловых и гидроэлектростанций;
- приводить примеры практического использования физических знаний о тепловых явлениях;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
- приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Электрические и магнитные явления

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, нагревание проводника с током, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током, прямолинейное распространение света, отражение и преломление света, дисперсия света;
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное

расстояние и оптическая сила линзы; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами;

- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение;
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля— Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы, формулы расчёта электрического сопротивления при последовательном и параллельном соединении проводников); на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- приводить примеры практического использования физических знаний о электромагнитных явлениях; различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля—Ленца и др.);
- приёмам построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Квантовые явления

- распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, возникновение линейчатого спектра излучения;
- описывать изученные квантовые явления, используя физические величины: скорость электромагнитных волн, длина волны и частота света, период полураспада; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом;
- различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, линейчатых спектров.

Выпускник получит возможность научиться:

- использовать полученные знания в повседневной жизни при обращении с приборами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- соотносить энергию связи атомных ядер с дефектом массы;
- приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра;
- понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза

Программа курса физики направлена на формирование у школьников предметных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами для школьного курса физики являются:

Познавательная деятельность:

использование для познания окружающего мира различных естественно-научных методов: наблюдения, измерения, эксперимента, моделирования;

формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;

овладение адекватными способами решения теоретических и экспериментальных задач; приобретение опыта выдвижения гипотез для объяснения известных фактов и для экспериментальной проверки этих гипотез.

Информационно-коммуникативная деятельность:

использование для решения познавательных и коммуникативных задач различных источников информации.

Рефлексивная деятельность:

владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий;

организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.

Решение задач образования и развития школьников, их воспитания и подготовки к труду возможно лишь при усвоении ими основ физической науки. В связи с этим, при отборе и методике преподавания материала необходимо обратить внимание на изучение основных фактов, понятий, законов, теорий и методов науки, на обобщение широкого круга физических явлений на основе теории. Отсюда вытекает повышение требований к умению учащихся применять основные исходные положения науки для самостоятельного объяснения физических явлений, результатов эксперимента, действия приборов и установок.

Главная цель изучения углубленного курса физики в 9 классе – углубление содержания основного курса и усиление его прикладной направленности.

В 9 классе программой предусмотрено изучение такого важного раздела как «Механика», знание которого влияет на более глубокое и осознанное изучение последующих разделов курса физики и умение решать разноуровневые задачи. Обучение в 9 классе ведется по учебнику «Физика – 9» под редакцией А. В. Перышкина, Е. М. Гутник.

Программой предусматривается большое количество времени отводить на практические формы занятий, выполнение фронтальных лабораторных работ и решение задач, что значительно превышает долю учебного времени, отведенного на эти формы занятий программой основного курса. В связи с этим на изучение физики в 9 классе отводится 4 часа в неделю. Интегрированный обучающий лабораторный комплекс для работ по физике является неотъемлемым элементом организации лабораторных работ по физике в 9 классах.

Тематическое планирование

9 класс (136 часов, 4 часа в неделю)

		Колич	Да	та
№ урока	TEMA	ество часов	9A	9Б
	Тема 1. ЗАКОНЫ ВЗАИМОДЕЙСТВИЯ И ДВИЖЕНИ	Я ТЕЛ		
1	Материальная точка. Система отсчета	1		
2	Траектория. Путь. Перемещение	1		
3	Решение задач по теме: «Перемещение»	1		
4	Определение координаты движущегося тела	1		
5	Перемещение при прямолинейном равномерном движении	1		
6	Сложение движений	1		
7	Графическое представление равномерного движения	1		
8	Решение задач по теме: «Графическое представление равномерного движения»	1		
9	Прямолинейное равноускоренное движение. Ускорение	1		
10	Контрольная работа № 1	1		
11	Скорость прямолинейного равноускоренного движения	1		
12	Графическое представление равноускоренного движения	1		
13	Решение задач по теме: «Графическое представление равноускоренного движения»	1		
14	Перемещение при прямолинейном равноускоренном движении	1		
15	Решение задач по теме: «Скорость и перемещение при равноускоренном движении»	1		
16	Лабораторная работа № 1 «Исследование равноускоренного движения без начальной скорости»	1		
17	Решение задач по теме «Равномерное и равноускоренное движение»	1		
18	Подготовка к контрольной работе	1		
19	Контрольная работа № 2 «Равномерное и равноускоренное движение»	1		

20			1
20	Относительность движения	1	
21	Инерциальные системы отсчета. Первый закон Ньютона	1	
22	Второй закон Ньютона	1	
23	Третий закон Ньютона	1	
24	Решение задач по теме «Второй и третий законы Ньютона»	1	
25	Сила упругости. Закон Гука.	1	
26	Движение под действием силы упругости	1	
27	Лабораторная работа № 2 «Исследование зависимости силы упругости от удлинения пружины. Измерение жесткости пружины»	1	
28	Сила трения	1	
29	Движение под действием силы трения	1	
30	Лабораторная работа № 3 «Исследование силы трения скольжения. Измерение коэффициента трения скольжения»	1	
31	Гравитационные силы. Сила тяжести. Свободное падение тел. Движение под действием силы тяжести	1	
32	Лабораторная работа № 4 «Исследование свободного падения»	1	
33	Движение тела, брошенного вертикально вверх.	1	
34	Решение задач по теме: «Движение тела, брошенного вертикально вверх»	1	
35	Движение тела, брошенного горизонтально	1	
36	Лабораторная работа № 5 «Изучение движения тела, брошенного горизонтально»	1	
37	Движение тела, брошенного под углом к горизонту	1	
38	Решение задач по теме: «Движение тела, брошенного горизонтально, движение тела, брошенного под углом к горизонту»	1	
39	Движение под действием нескольких сил по горизонтали	1	
40	Движение тел по наклонной плоскости	1	
41	Движение связанных тел	1	
42	Вес тела. Вес тела, движущегося с ускорением. Невесомость. Перегрузки	1	
43	Решение задач «Вес тела. Невесомость. Перегрузки»	1	

44	Закон всемирного тяготения	1	
45	Открытие планет Нептун и Плутон	1	
46	Решение задач по теме «Закон всемирного тяготения»	1	
47	Прямолинейное и криволинейное движение. Движение по окружности	1	
48	Решение задач по теме «Движение по окружности»	1	
49	Искусственные спутники Земли	1	
50	Первая космическая скорость	1	
51	Подготовка к контрольной работе	1	
52	Контрольная работа № 3 «Законы Ньютона. Силы»	1	
53	Импульс тела. Закон сохранения импульса	1	
54	Решение задач по теме «Закон сохранения импульса»	1	
55	Реактивное движение. Ракеты	1	
56	Механическая работа. Работа сил, приложенных к телу. Кинетическая энергия	1	
57	Работа силы тяжести. Потенциальная энергия	1	
58	Работа силы упругости	1	
59	Работа силы трения	1	
60	Мощность	1	
61	КПД. Решение задач «Механическая работа. Мощность. КПД»	1	
62	Закон сохранения энергии	1	
63	Решение задач по теме «Энергия. Закон сохранения энергии»	1	
64	Подготовка к контрольной работе	1	
65	Контрольная работа № 4 «Импульс. Энергия. Работа. Мощность»	1	
	Тема 2. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ	l .	1
66	Колебательное движение. Свободные колебания. Маятник	1	
67	Величины, характеризующие колебательное движение	1	

68	Математический маятник	1	
69	Лабораторная работа № 6 «Исследование зависимости	1	
	периода и частоты свободных колебаний математического		
	маятника от его длины»		
70	Лабораторная работа № 7 «Измерение ускорения	1	
	свободного падения с помощью маятника»		
71	Гармонические колебания. Превращение энергии при	1	
	колебательном движении		
72	Решение задач по теме: «Колебательное движение»	1	
73	Затухающие и вынужденные колебания	1	
74	Вынужденные колебания. Резонанс	1	
75	Распространение колебаний в среде. Продольные и	1	
	поперечные волны		
76	Длина волны. Скорость распространения волн	1	
77	Решение задач по теме: «Механические колебания и	1	
	волны»		
78	Сейсмические волны	1	
79	Источники звука. Высота, тембр и громкость звука	1	
80	Распространение звука. Звуковые волны. Эхо	1	
81	Ультразвук и инфразвук	1	
82	Интерференция звука	1	
83	Подготовка к контрольной работе	1	
84	Контрольная работа № 5 «Механические колебания и	1	
	волны»		
	Тема 3. ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ		
85	Магнитное поле и его свойства. Неоднородное и	1	
	однородное магнитное поле		
86	Решение задач по теме: «Однородное магнитное поле»	1	
87	Направление тока и линий его магнитного поля	1	
88	Решение задач по теме: «Определение силы Ампера»	1	
89	Обнаружение магнитного поля по его действию на	1	
	электрический ток		
90	Решение задач по теме «Сила Лоренца»	1	
91	Индукция магнитного поля	1	

92	Решение задач по теме «Индукция магнитного поля»	1	
93	Магнитный поток	1	
94	Решение задач по теме: «Магнитный поток»	1	
95	Явление электромагнитной индукции	1	
96	Направление индукционного тока. Правило Ленца	1	
97	Лабораторная работа № 8 «Изучение явления	1	
	электромагнитной индукции»		
98	Явление самоиндукции	1	
99	Получение и передача переменного электрического тока	1	
100	Электромагнитное поле	1	
101	Электромагнитные волны. Электромагнитная природа	1	
	света		
102	Конденсатор	1	
103	Колебательный контур. Получение электромагнитных	1	
	колебаний		
104	Принцип радиосвязи и телевидения	1	
105	Решение задач по теме «Электромагнитное поле»	1	
106	Интерференция света	1	
107	Электромагнитная природа света	1	
108	Преломление света. Физический смысл показателя	1	
	преломления		
109	Дисперсия света. Цвета тел	1	
110	Спектрограф и спектроскоп. Типы оптических приборов.	1	
	Спектральный анализ		
111	Поглощение и испускание света атомами. Происхождение	1	
	линейчатых спектров		
112	Подготовка к контрольной работе	1	
113	Контрольная работа № 6 «Электромагнитное поле»	1	
	Тема 4. СТРОЕНИЕ АТОМА И АТОМНОГО ЯДРА	L	
114	Модели атома. Опыты Резерфорда	1	
115	Радиоактивность	1	
116	Радиоактивные превращения атомных ядер. α- и β-распад.	1	
	Правило смещения		

117	Решение задач по теме: «Радиоактивные превращения	1	
	атомных ядер»		
118	Экспериментальные методы исследования частиц	1	
119	Лабораторная работа № 9 «Изучение треков	1	
	заряженных частиц по готовым фотографиям»		
120	Открытие протона. Открытие нейтрона	1	
	2 Состав атомного ядра. Изотопы	1	
1			
122	Решение задач по теме: «Состав атомного ядра»	1	
	2 Ядерные силы. Энергия связи. Дефект масс	1	
3			
124	Решение задач по теме: «Энергия связи. Дефект масс»	1	
125	Деление ядер урана. Цепная ядерная реакция	1	
126	Лабораторная работа № 10 «Изучение деления ядра	1	
	урана по фотографии треков»		
127	Ядерный реактор. Атомная энергетика	1	
128	Решение задач по теме: «Радиоактивные превращения	1	
	атомных ядер»		
	2 Биологическое действие радиации. Закон радиоактивного	1	
9	распада		
130	Термоядерная реакция	1	
131	Элементарные частицы. Античастицы	1	
132	Подготовка к итоговой контрольной работе	1	
133	Итоговая контрольная работа	1	
134	Резерв	1	
135	Резерв	1	
136	Резерв	1	
ИТОГО		136	

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА

Перышкин А.В. Сборник задач по физике: 7-9 кл.: к учебникам А.В.
 Перышкина и др. «Физика. 7 класс», «Физика. 8 класс», «Физика. 9
 класс». ФГОС (к новым учебникам) / А.В. Перышкин; сост. Г.А. Лонцова.
 – 19-е изд., перераб. И доп. – М.: Издательство «Экзамен», 2017. – 271 с.

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ

- Громцева О.И. Тесты по физике. 9 класс: к учебнику А.В. Перышкина, Е.М. Гутник «Физика. 9 кл.» / О.И. Громцева. 6-е изд., перераб. И доп. М.: Издательство «Экзамен», 2014. 173 с.
- Контрольно-измерительные материалы. Физика. 9 класс / Сост. С.В. Лозовенко. 4-е
 изд. М.: ВАКО, 2019. 96 с.
- Марон А.Е. Физика. 9 класс: учебно-методическое пособие / А.Е. Марон, Е.А. Марон.
 4-е изд., стереотип. М.: Дрофа, 2006. 127 с.: ил.

ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ